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Summary 
Social networks analysis (SNA) has recently been used in veterinary
epidemiology to study livestock movements. A network is obtained by
considering livestock holdings as nodes in a network and movements among
holdings as links among nodes. Social networks analysis enables the study of the
network as a whole, exploring all the relationships among pairs of farms. Highly
connected livestock holdings in the network can be identified, which can help
surveillance and disease prevention activities. Observed livestock movement
networks in various countries have shown an important level of contact
heterogeneity and clustering (topological, not necessarily geographical or
spatial) and understanding the architecture of these networks has provided a
better understanding of how infections may spread. The findings of SNA studies
of livestock movement should be used to build and parameterise epidemiological
models of infection spread in order to improve the reliability of the outputs from
these models. 
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Introduction
Modelling the spread of animal diseases, particularly
highly contagious diseases, requires knowledge of the
patterns of animal movements. Animals moved from farm
to farm, for example, represent a risk of propagation of an
infectious disease agent. The knowledge of where and
when animals move on and off premises is also a critical
piece of information during an epidemic in order to trace
potentially infected animals. As a result, a number of
countries throughout the world have created livestock
movement databases. The information contained in these
databases is now available to researchers wanting to
develop parameters for epidemiological modelling studies.

Until recently, the most common approach to studying
animal movements was to obtain information on the
frequency of movements on and off farms (11, 16, 51, 52).

With the availability of livestock movement data, it now
becomes possible to build networks of livestock holdings
connected to each other through the movement of animals.
In these networks the unit of interest is the holding, or
node, and the relationship is the movement, or tie, which
produces paths on which infectious disease agents can
spread. Social network analysis (SNA) provides the tools
and methods to study these networks as a whole and to
understand the role each holding plays in the network.
This can lead to the identification of holdings that are
central in the flow of animals in the population, perhaps
due to their large number of commercial partners for
example. These holdings could be targeted for surveillance
activities in order to accelerate the detection of highly
contagious diseases. Social network analysis can also help
us understand the potential spread of an infectious disease
agent during the silent spread phase, which is the time
period between introduction of an infectious agent in a
population and first detection. 



Social network analysis is an approach that is based on the
study of the relationships among social entities, and on the
patterns and implications of these relationships (56). Two
reviews have been published describing the terminology
and applications of the technique in preventive medicine
and epidemiological modelling (24, 41). The approach is
based on graph theory, which is used to study pair-wise
relationships between objects in the same collection. This
approach has only recently been used for analysing
livestock movements (12, 13, 18, 23, 37, 48, 49, 58, 59).
The objective of this paper is to introduce the most
commonly used concepts and measures of SNA in the
study of animal movements and how these can be used to
support animal disease modelling. 

Network representation 
and description
Box 1, based on the table provided in the review paper by
Dubé et al. (24), provides the definitions of SNA terms
presented in this paper. Words in the box appear in italics
the first time they are mentioned in the text. A network is
a collection of units of interest that may or may not be
connected. The units of interest are normally called nodes
or vertices in physics and mathematics, while they are
normally referred to as actors in the social sciences.
Examples of networks include the world wide web (pages
are nodes that can be connected to each other), social
networks (who is friends with who), communications or
power system networks, and transportation systems
(airports are nodes linked by aircraft flights). In a
population of farms, each farm would be a node in the
network. Nodes may have attributes, such as the type of
species they contain, their geographical location, and their
size in terms of number of animals, which can be studied
in the context of SNA. Nodes are linked to each other
through a relationship of some sort. For example, animal
movements from farm-to-farm link farms together in a
network. When these links between farms are reciprocal or
undirected they are called edges. When these links are uni-
directional or directed, they are called arcs (56). How a
relationship is defined between two nodes can allow arcs to
be considered as edges. For example, the movements of
animals from farm to farm may be viewed as arcs (directed)
if we consider the directionality from a source farm to a
recipient farm. But if we consider this relationship as being
a business transaction, then arcs can become edges
(reciprocal) in SNA terminology. Arcs and edges may be
binary or valued, depending on the characteristics of the
relationship under study.

When made of arcs, a network is described as directed,
whereas it is considered undirected when made of edges
(Fig. 1). As SNA has its roots in graph theory, networks can

be represented either in matrix format or as graphs (Fig. 1).
The matrix format allows the execution of a variety of
measures and calculations used to provide descriptive
statistics of the networks. The size of a network is
represented by the total number of nodes present in the
network. 

The duration of the time period that is explored in order to
build the network of relationships will be a critical factor
and must be carefully considered at the start of the study.
For example, studying livestock movements that took
place over a year might yield a very different network than
a monthly network. When building a livestock movement
network, the unit of concern must be defined. In most
cases, a livestock holding (market, farm, or dealer) will be
a node, but in some situations an entire village may be a
node in the network. Secondly, the description of the
movements that occurred among the nodes in a defined
time period is required. The data will be arranged so that
it is possible to know the source and destination of the
movement. Attribute information for each node can also be
included in the analysis as well as any weighting given to
the links among nodes.
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Fig. 1
Graphical representation of directed and undirected networks
In the directed network, farm A shipped animals to farms B and C. 
In the undirected network, farm A has a mutual relationship with farms
B and C. Below each network is the data it contains in matrix format
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Box 1
Glossary of social network analysis terms interpreted in the context of livestock movement (adapted from 24)

Name Definition

Accessible world The total number of livestock holdings that can be reached directly (in one step) or indirectly (through another 
holding)  (59). Also known as the ‘output domain’ in social networks analysis (21)

Arc A directed link between two nodes (56)
Average path length The shortest path, or geodesic, among two livestock holdings averaged over all pairs of livestock holdings in the

network (57)
Betweenness The frequency with which a livestock holding is in the shortest path between pairs of holdings in the network (27)
Clustering coefficient If a neighbour is defined as a livestock holding in direct contact with the holding of interest, the clustering

coefficient represents the proportion of one’s neighbours who are also neighbours of one another (57)
Closeness The mathematical inverse of farness or the inverse of the average distance between a holding and all the other

holdings in a network (56)
Components Maximally connected subregions of a network in which all pairs of livestock holdings are directly 

or indirectly linked (49)
Cut-points Represents a livestock holding which if removed from the network leads to an increase in the number of 

components, therefore increasing the level of fragmentation in the network (48)
Density Represents the proportion of links (C) among livestock holdings (k) in the network that are actually present using 

equation: C / k(k-1) (56)
Directed network A network in which ties among nodes are represented by arcs (unidirectional; 56)
Edge An undirected, reciprocal, link between two livestock holdings (56)
Farness The sum of the shortest distances (not geographical, but path length) from a source livestock holding to all other 

reachable holdings in the network (18)
Fragmentation The proportion of pairs of livestock holdings that are unreachable in the network; a path does not exist 

between them (14)
Geodesic The shortest path length between two livestock holdings (21)
Giant strong component The largest strong component in the network (32)
Giant weak component The largest weak component in the network (32)
Hub A holding with high in- and out-degree values compared to other holdings in the network
Infection chain The number of holdings that can be reached directly (one-step) or indirectly (through another holding) by a 

holding in the network, accounting for the sequence of movements in time (23)
In-degree Number of individual sources providing animals to a specific livestock holding (56)
k-neighbours The number of livestock holdings that can be reached in k steps from a specific holding (44)
Measures of centrality Measures to identify the importance and role of individual livestock holdings in the network such as: 

degree distributions, betweenness, and farness (56)
Measures of cohesiveness Measures to determine the level of connectivity in the network such as: density, clustering coefficient and 

average path length
Node The unit of interest in social network analysis
Out-degree Number of individual recipients obtaining animals from a specific livestock holding (56)
Path A path between farm A and farm C (Fig. 1) is the number of steps required to travel from A to C. In this example,

1 step is required. In a path, livestock holdings (nodes) and links (arcs) cannot be repeated to move from a source
to a recipient (21). Also see geodesic and average path length

Random homogeneous mixing It is a network in which all individuals are equally likely to be infected by contact with an infected individual
Scale-free network A network in which the out-degree and in-degree distributions fit a power law distribution (Fig. 2b). 

Allows the presence of hubs in the network (9)
Small-world network A network characterised by high clustering and short path length (53). In such networks agents tend to spread 

more rapidly, but ultimately infect fewer individuals, compared to random mixing networks (43) 
Source Livestock holding that has zero in-degree but its out-degree is ≥1. It does not receive shipments from anyone in 

the network (21)
Strong component A directed network in which all livestock holdings are mutually accessible by following the direction of the links 

in the network (49)
Tie Relationship among nodes in the network
Topology Also known as network architecture. It is the study of the arrangement or graphing of the elements (livestock 

holdings, links) of a network and refers to topological properties such as small-world, clustering, path length, 
and scale-free properties

Undirected network A network in which ties among nodes are represented by edges (bidirectional; 56)
Weak component An undirected network in which all livestock holdings are linked, not taking into account the direction of the 

links (49). But not all farms are reachable from one another if we take into account the direction of the links



Measures of centrality: 
node-level metrics
One of the main objectives of SNA is to identify nodes that
are central, or important in the network. Three measures
are used to characterise nodes: node degree, betweenness
and farness (56). Each of these measures will be presented
as well as examples of how they have been applied in
livestock movement studies. 

The node degree represents the number of contacts per
node. In an undirected network, it would represent the
number of nodes with which it shares a connection. For
example, in Figure 1, farm A would have a degree of 2. In
a directed network, the degree value is divided into out-
degree, which is the number of arcs that originate from each
node in the network, and in-degree, which is the number of
arcs that each node receives in the network (56). In Figure
1, farm A would have an out-degree of 2 and an in-degree
of 0. Livestock holdings with high out-degree and in-
degree values could be considered hubs in the network and
can be at risk of becoming infected and infecting a large
number of other holdings in the network. 

The betweenness of a node represents the frequency with
which a node is on the shortest ‘path’ between pairs in the
network. This means that a node with high betweenness is
important in linking a high number of pairs in the network
and its removal, through quarantine during an outbreak or
depopulation, can lead to fragmentation of the network,
which results in a network in which nodes are not as
reachable. 

Farness of a node expresses how distant topologically, not
geographically, it is from all other nodes in the network.
Mathematically, it is the inverse of closeness, which is a
measure of how closely connected a node is to all other
nodes in the network. Presumably, a node with a high
value of farness should not represent a threat to other
nodes in the network when considering the spread of an
infectious disease agent. 

All these measures help researchers gain an understanding
of the importance of individual nodes in the network.
Recent SNA studies of livestock movements (12, 18, 23,
35) explored the distributions of out-degree and in-degree
values and noted an important level of heterogeneity or
variation in the number of contacts per holding. These
degree distributions are characterised by a power-law
distribution and the networks are characterised as scale-free
networks (3). The reason for calling these networks scale-
free is that the power law distribution does not have a peak
and it is characterised by a long tail which gives the high
variation in the number of contacts per node (Fig. 2).
Barabási (7) translates this into the absence of an average

node in comparison to the average node found in the
Poisson or normal distributions. Because of the presence of
hubs in the network, the average node does not represent
the typical node in scale-free networks. The presence of the
tail in the distribution allows for the presence of hubs in a
network, a concept that is not allowed in traditional
Poisson-based random networks (2). Various observed
networks in the world have been defined as scale-free: the
internet (26), the world wide web (3), the power grid in
the United States and the movie actors collaboration
network (8), the citation network of scientific
collaborations (47) and the web of sexual contacts (39). A
review on scale-free networks has been published (2).

The implication of scale-free networks for the way in
which infectious diseases might spread is important (9).
These networks have been shown to display a high level of
resiliency to random attacks. This is due to the presence of
a very large number of weakly connected nodes in the
network. In this situation, the probability of a random
attack being directed at a hub is low. However, scale-free
networks are susceptible to targeted attacks directed at
hubs, which will seriously disturb the structure and
functioning of the network. If an infectious disease agent
such as the foot and mouth disease (FMD) virus is
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introduced randomly in a population of farms, the
consequences are not necessarily dramatic; however, if the
virus finds its way to a livestock market, a hub in the
network, as occurred in the 2001 outbreak in the United
Kingdom (UK), a large number of farms can become
infected before authorities are aware that the virus is
circulating. This can make it hard for authorities to gain
control of the spread of the virus and can lead to a large
number of infected holdings.

Node-level measures are therefore important to assess the
role of various livestock holdings in animal movement
networks. Finding holdings with high betweenness will
help us understand who can control the flow of animals
from one part of the network to another. Robinson and
Christley (48) studied the movement of cattle through
auction markets in the UK between 2002 and 2004 and
found that markets and some farms had high betweenness.
The authors identified these holdings as cut-points which, if
removed from the network, increase the number of
components, or fragment the network. Identifying attributes
of these farms and knowing their geographical location in
advance could potentially reduce the spread of an
infectious disease agent, because quarantine measures
could be introduced on such premises in the event of an
outbreak of a highly contagious disease. 

Measures of cohesiveness:
network-level metrics
These measures assess the level of connectedness of the
network as a whole. They include density, fragmentation,
average path length and clustering coefficient (CC). The
density of the network represents the proportion of links,
out of all those that are possible, that are actually present.
This value can range from 0 to 1, where 1 would mean that
all nodes in a network are connected to each other directly.
Fragmentation represents the proportion of pairs in the
network that are unreachable, which means that a path
does not exist to connect them. In Figure 1, the pair made
of farms B and C is unreachable because a path does not
link them. Ranging from 0 to 1, fragmentation gives an
insight into how an infectious disease agent may spread:
the more fragmented a network, the less easy it is for an
infection to spread to a large number of holdings. The
average path length refers to the average shortest distance
(number of steps) among reachable pairs in the network. It
has been used in the social sciences to determine how
connected the world is, leading to the ‘six degrees of
separation’ concept (42). 

The clustering coefficient is an important measure in SNA
as it has been used to characterise networks as small-world.
Watts and Strogatz (57) have defined the CC as the

proportion of one’s neighbours in the network who are also
neighbours of one another. Small-world networks are
characterised by high CCs and short average path length
represented by a few long-distance connections that link
topologically distant clusters in the network. The
implication of small-world networks is that an infection
will not only spread within clusters in the network, but it
can also reach other clusters, topologically (not necessarily
geographically) distant in the network. Therefore, large
geographical distances between farms may not prove to be
a barrier to infection spread in small-world networks.
Various networks have been characterised as small-world:
the neural network of the nematode worm Caenorhabditis
elegans, the power grid in the United States (57), the cattle-
movement network in the UK (18) and in Denmark (13),
the poultry industry network in New Zealand (40), and the
movement of adult milking cows in Ontario, Canada, as
part of the Dairy Herd Improvement Program (23). 

Finding cohesive sub-groups
In large complex networks, a number of sub-groups can be
found which may be of interest to the researcher and there
exist various rules to identify sub-groups in a network.
Cohesive sub-groups or components are maximally
connected sub-regions of a network in which all pairs of
livestock holdings are directly or indirectly linked (49).
Figure 3 provides a representation of components in a
directed network such as a livestock movement network.
In an undirected network, the component includes all
nodes that are mutually reachable. In a directed network,
the strong component includes all the nodes that are
mutually accessible when accounting for the direction of
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Fig. 3
Strong (SC) and weak components (WC) in a livestock
movement network
The SC includes all holdings that can be reached from one another,
respecting the direction of the connections. The WC includes all
holdings that can be reached from one another disregarding the
direction of the connections, considering them reciprocal



the arcs in the network. The weak component includes all
nodes that are mutually accessible when links are
considered undirected or reciprocal. In a livestock
movement network this would mean that we would
disregard the actual direction of the shipments. In large
complex networks, strong and weak components of various
sizes can be identified and, usually, single large giant strong
(GSC) and giant weak (GWC) components will emerge. 

The size of the components has been used to predict the
potential size of epidemics, a topic that will be covered
later in this paper. Components have also been used to
describe the evolution of the cattle movement network in
Great Britain that resulted from movement regulations that
were put in place in 2001 (49). The analysis showed a
linear increase in the size of the GSC in weekly networks
between 2002 and 2004. This increased connectivity was
attributed to increased communications among producers
in order to maximise movements under the new
regulations and an increased reliance on dealers and
markets for these movements. Although the new
movement regulations were put in place to reduce the
potential for large epidemics, the results of the Robinson et
al. study suggest the regulations had the opposite effect,
leading to a self-organising system that has increased the
potential size of infectious disease epidemics within the
cattle industry.

Use of social network analysis
in veterinary epidemiology
The application of SNA in veterinary epidemiology is only
recent, with the technique being first presented at a
conference in 2002 (60) and the first two papers being
published in 2003 (17, 20). Most of the published work
comes from the UK and the studies can be classified into
three main categories: 

– descriptive SNA studies 

– retrospective analyses of epidemics 

– studies of how the network structure impacts disease
control measures and studies used to predict potential
epidemic spread.

Most descriptive studies focus on measures of centrality and
measures of cohesiveness (12, 13, 15, 18, 22, 23, 40, 48, 55,
58, 59, 60). Movement networks in these studies have
been characterised as scale-free and small-world,
suggesting universal properties that can help us
understand how infectious disease agents may spread and
evaluate how best to intervene in order to stop their
spread. An important element of these descriptive studies
was their use of the components to predict maximal
potential epidemic size, as discussed later in the paper.

Two studies evaluated the networks of livestock
movements in the initial phase of the 2001 FMD epidemic
in the UK (44, 54). Both identified markets and dealers as
key players in the initial transmission of the FMD virus,
leading to long-distance transmission and scale-free-type
architecture of the network. Ortiz-Pelaez et al. (44) also
identified a few key farms with high betweenness that
played a key role in the early widespread transmission of
the virus. This suggests that livestock holdings with high
betweenness and a high number of k-neighbours (where
k ≤ 2) should be targeted for disease control activities once
primary actors such as markets and dealers have been
contained. Shirley and Rushton (54) suggested that
because of the high level of clustering of farms in the UK
landscape, once movement restrictions are in place, a
contagious spatially-clustered spread takes place. In order
to be effective, control measures must be swift and total at
the local level, simultaneously removing infected holdings
and all of their possible contacts.

One of the main uses of SNA in veterinary epidemiology
has been as a post hoc analysis tool for evaluating
movements that have taken place and extrapolating to
what might happen in the future. This allows us to evaluate
the impact of disease control measures according to the
structure of the network and to try to predict potential
epidemic size following the introduction of a highly
contagious disease. For example, the movements of sheep
in Great Britain were analysed using SNA (58, 59, 60) in
order to understand the impact of the six-day movement
standstill implemented in the country following the 2001
FMD epidemic in the UK (59). The results of the study
showed that the standstill was ineffective in fragmenting
the sheep movement network because most agricultural
shows were eight or more days apart. The results
demonstrated that, in any future epidemic, restrictions of
7, 14 or 21 days would have the desired effect of
fragmenting the network and creating disconnected
components in the network, thus reducing the potential
spread of an infectious disease agent (59). 

The impact of contact tracing has also been explored in the
context of movement networks. Tracing during an
epidemic is used to identify livestock holdings that might
have received infected animals in order to reduce the
spread of an infection. Kiss et al. (36) evaluated the impact
of contact tracing and removal of nodes in theoretical
scale-free and random network models. Because an
infection spreads faster in scale-free networks, due to the
presence of hubs, contact tracing is not able to catch up to
the disease. For this reason the authors recommend
intelligent tracing, using prior knowledge of who may be
most connected in the network and removing these highly
connected nodes from the network before they are able to
spread an infection. This approach reinforces the need to
identify highly connected nodes beforehand and to have a
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strategy in place should a highly contagious disease be
introduced in the population. 

Various measures have been used to estimate potential
epidemic size using SNA. Christley et al. (18) proposed the
size of the GSC and GWC as a measure of the population
at risk in the network as a result of the introduction of an
infectious disease agent. (18). This approach is based on
the fact that components represent a region of maximal
connectivity among livestock holdings in a network where
all nodes are connected to each other. In theory, all
holdings in a component could become infected if an
infectious disease agent were introduced into such a
region. Kao et al. (31) further developed the concept of
using the GSC as a measure of the lower bound of maximal
potential epidemic size and the GWC as the upper bound
of maximal potential epidemic size, a concept that was
then used by other researchers (32, 37, 49, 55). 

However, Dubé et al. (23) suggested that components may
not be the best measures to use for estimating maximal
epidemic size because there are rules defining these
components that may not be appropriate when thinking of
livestock movements and infection spread. There is an
implied requirement for the strong component that from
any given livestock holding that is a source of livestock
movements, there must be a path formed by movements in
the network that leads back to that source holding.
However, infection spread in an epidemic does not follow
such a rule. Also, the weak component requires that all
relationships between holdings be reciprocal, which is not
necessarily true for livestock movements. Therefore, the
size of the GSC and GWC may not reflect the size of actual
infection chains or the accessible world of individual holdings
that are contained within the network. In fact, Dubé et al.

(23) suggest that the infection chain provides the most
biologically plausible estimate of potential maximal
epidemic size because the technique takes into account the
direction of the shipments and their order in time, two
important concepts when considering infection spread. In
a simple example to illustrate this point consider three
farms (A, B and C) where A ships to B, which in turns ships
animals to C. In order for farm A to be a risk of infection
for farm C, it must have shipped to B before farm B
shipped to farm C. This order in time of shipments is not
considered in the strong component, yet, it is critical when
considering the spread of infections. 

Implications for 
epidemiological modelling
Infection spread will vary greatly depending on the topology
of the network (53). Therefore, accounting for this
topology is critical in order to improve the results of
epidemiological modelling studies. A review of networks
and epidemic models has been published by Keeling and
Eames (33). Standard approaches to epidemiological
modelling have been based on assumptions of random
homogeneous mixing within the population (4, 5, 34), with
the use of mass-action or differential equation models such
as susceptible-infectious-recovered (SIR) or susceptible-
infectious-susceptible (SIS) models, or discrete-time chain
binomial models (Reed-Frost; 1). In such models
connections are assigned randomly and all individuals
have the same low probability of coming into contact with
each other. These models may be represented by random
graphs (6, 10). In random graphs (Fig. 4), connections

Fig. 4
Representation of some of the different network model structures
a) The random network in which all connections are assigned randomly, based on the Poisson or normal distribution. It displays very little clustering
and a short average path length
b) The lattice network, which is highly clustered but has a long average path length. All nodes in this network are connected to their neighbours
c) The small-world network which displays high clustering and a short average path length. Nodes are connected to their neighbours but a few links
also connect different clusters in the network, shortening the path length compared to the lattice network

a) Random b) Lattice c) Small-world
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among individuals in the population are based on
algorithms, developed by Erdös and Renyi (25), which
assign connections randomly based on the average number
of connections per node (or degree). The degree
distribution in these networks is represented by a Poisson
or normal distribution. It is rare to find nodes that have
either a very low or a very high number of connections
compared to the average node in these types of networks.

Random networks or graphs have been used because of the
ease with which they can be generated and analysed. The
spatial location of individuals in these networks is not
relevant. Because of the random processes used to generate
these networks they display very little clustering and the
likelihood of being connected to one’s neighbour’s
neighbour is no different than the likelihood of being
connected to a random node in the network, they display
very little clustering. But they do have a short average path
length because connections within them are established
randomly, to any part in the network, with the same
probability (53). These random network models have been
useful in a variety of situations in which accounting for
contact heterogeneities is not critical. For example, this
type of model is often well suited to within-herd
transmission modelling (46). 

Refinements and expansions of these standard techniques
have been made to account for various heterogeneities as
well as spatial and host characteristics. For example, large,
state-transition, spatially explicit simulation models have
been developed to study the spread of the FMD virus in
populations (29, 50). Although these models are able to
account for spatial clustering, stochasticity, and host-level
factors that influence infection transmission, they do not
represent the contact heterogeneity found in observed
livestock movement networks. 

Another method of network modelling has been to use
highly regular lattice structures to connect the nodes in a
network (Fig. 4). In such networks, the probability of
being connected to one’s neighbour’s neighbour is much
higher than the probability of being connected to a random
node in the network. These types of networks have high
clustering but a long average path length compared to
random networks of similar size, because some regions of
the network are topologically remote from others (53).
They are often used to represent spatial relationships
among nodes (19, 28).

Both random and lattice networks are forms of random
homogeneous mixing in which a high level of homogeneity
in the number of contacts per node exists; however, they
differ in the way in which connections are established,
which leads to differences in clustering and average path
length (53). Recently, with the characterisation of various
observed networks as scale-free and small-world, these
models have become less useful for representing observed

networks that are non-homogeneous. The study of the
impact of the topology of these networks on infection
spread has shown that network characteristics such as
clustering, average path length and degree distribution will
influence the velocity of spread of an infection, the final
size of epidemics, and the impact of control measures (30,
36, 53). The shorter the average path length, or the more
connections among nodes in the network, the faster an
epidemic can spread (53). Early on in an epidemic,
because of the presence of hubs in theoretical scale-free
networks, the disease will spread more quickly on this type
of network than on random networks of similar size (36,
45). However, once hubs are infected and they have
infected their partners, infection then spreads more slowly
than in random networks (31). In some cases, the overall
epidemic size will be larger in random networks than in
scale-free networks because of the rapid depletion of
potential contacts early on in epidemics in scale-free
networks (35). Clustering (not necessarily geographical or
spatial) has also been shown to reduce the size of an
epidemic on theoretical highly clustered networks, but it
lowers the epidemic threshold, making it easier for diseases
to spread (43). 

The results of SNA studies have provided us with insights
into the topology of networks and the importance of
accounting for this topology when considering infection
spread. However, few epidemiological models currently
account for contact heterogeneity at the time of writing 
this paper. 

Conclusion
Social network analysis is a useful tool for the
epidemiologist in understanding the broad consequences
of livestock movements. No other approach to date has
allowed the study of all the relationships among livestock
holdings resulting from these movements. In the future it
will be possible to add other types of contacts, such as the
movements of dairy tankers or artificial inseminators, in
order to increase the detail-level of contact networks on
which infections can spread. Therefore, as more
information becomes available, SNA will become
increasingly useful for studying potential epidemics.

There are limitations to the use and usefulness of SNA. It
does require high quality and complete data in order to
provide an appropriate understanding of the true
networks. In some regions, these data may not be available
for financial, political or confidentiality reasons. In such
situations, samples have been used and the issue of
representativeness of the results, as with any other
epidemiological study, must be considered. When data are
available, network databases can be very large and can
easily overwhelm generic SNA software. Martinez-López et



al. (41) suggest the aggregation of records into nodes that
could represent municipalities, districts, or countries.
These data could then be screened for the identification of
areas that would be of interest for further study, as was
done by León et al. (38). 

Social network analysis is a tool for studying potential
epidemic spread and identifying central and/or highly
connected livestock holdings in a network and can
therefore help in planning surveillance, disease control and
eradication measures. It also provides data to build and
parameterise epidemiological models of infection spread.
To date, SNA studies have shown the importance of
considering livestock movement network topology, for this
topology can have an impact on how quickly and widely

an infection can spread. As a result, epidemiological
modellers should assess how they can represent the levels
of heterogeneity and network topology of observed
livestock movement networks in their models. Keeling and
Eames (33) suggest that the only appropriate approach to
studying control measures for infectious diseases such as
contact tracing and ring vaccination is to use network-
based models, and that the ultimate goal should be to
develop a set of robust network statistics that allow us to
predict epidemic dynamics when the population structure
deviates from the random homogeneous mixing
framework. 
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Introduction à l’analyse des réseaux et à ses conséquences 
pour la modélisation de la santé animale

C. Dubé, C. Ribble, D. Kelton & B. McNab

Résumé 
Des chercheurs en épidémiologie animale ont récemment appliqué l’analyse des
réseaux sociaux à l’étude des mouvements de bétail. On construit un réseau en
considérant chaque élevage comme un nœud du réseau et chaque déplacement
entre élevages comme un lien entre nœuds. L’analyse des réseaux sociaux
permet d’étudier un réseau comme un tout, en envisageant toutes les relations
possibles entre les élevages pris par paires. Les élevages déployant le plus
d’interactions au sein du réseau sont ainsi identifiés, ce qui s’avère très utile lors
des opérations de surveillance et de prévention. D’après ces études, dans
plusieurs pays les mouvements d’animaux domestiques tracent des
configurations en réseaux qui révèlent une grande hétérogénéité en termes de
contacts et de formation de grappes (au plan topologique, et non
nécessairement géographique ou spatial) ; la prise en compte de l’architecture
de ces réseaux a permis de mieux comprendre comment les infections se
propagent. Il serait intéressant d’utiliser les résultats des analyses des réseaux
sociaux appliquées aux mouvements d’animaux d’élevage pour construire des
modèles épidémiologiques de la propagation des infections en établissant des
paramètres appropriés, ce qui permettrait d’améliorer la fiabilité des projections
obtenues au moyen de ces modèles. 

Mots-clés
Analyse des réseaux – Modélisation épidémiologique – Mouvements d’animaux
d’élevage – Propagation d’une infection.
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Introducción al análisis de redes y sus consecuencias 
para la elaboración de modelos de enfermedades animales

C. Dubé, C. Ribble, D. Kelton & B. McNab

Resumen 
Últimamente, en el ámbito de la epidemiología veterinaria se ha utilizado el
análisis de redes sociales para estudiar los movimientos de ganado. Para definir
una red se considera que sus nodos son las explotaciones ganaderas, y que los
movimientos entre éstas son los vínculos entre los nodos. El análisis de redes
sociales permite estudiar la red en su integridad, observando todas las
relaciones entre elementos homólogos de las explotaciones. Es posible así
detectar centros ganaderos con gran densidad de conexiones, lo que puede ser
útil para las actividades de vigilancia y prevención de enfermedades. Las redes
de movimientos de ganado observadas en varios países han puesto de relieve un
importante nivel de heterogeneidad y agrupamiento (topológico, no
necesariamente geográfico o espacial) de los contactos, y la comprensión de la
arquitectura de esas redes ha ayudado a entender mejor la forma en que pueden
propagarse las enfermedades. Para crear y parametrar modelos
epidemiológicos de la diseminación de enfermedades convendría utilizar los
resultados de los análisis de redes sociales aplicados a los movimientos de
ganado, lo que daría un mayor grado de fiabilidad a los resultados obtenidos con
esos modelos.
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– Propagación de infecciones.



13. Bigras-Poulin M., Thompson R.A., Chriel M., Mortensen S. &
Greiner M. (2006). – Network analysis of Danish cattle
industry trade patterns as an evaluation of risk potential for
disease spread. Prev. vet. Med., 76, 11-39.

14. Borgatti S.P., Everett M.G. & Freeman L.C. (1999). – UCINET
6.0 Version 6.17. Natick: Analytic Technologies.

15. Brennan M.L., Kemp R. & Christley R.M. (2008). – Direct
and indirect contacts between cattle farms in north-west
England. Prev. vet. Med., 84, 242-260.

16. Christensen J., McNab B., Stryhn H., Dohoo I., Hurnik D. &
Kellar J. (2008). – Description of empirical movement data
from Canadian swine herds with an application to a disease
spread simulation model. Prev. vet. Med., 83, 170-185. 

17. Christley R.M., Pinchbeck G.L., Bowers R.G., Clancy D.,
French N.P., Bennett R. & Turner J. (2003). – Infection in
social networks: using network analysis to identify high-risk
individuals. Am. J. Epidemiol., 162, 1024-1031.

18. Christley R.M., Robinson S.E., Lysons R. & French N.P.
(2005). – Network analysis of cattle movement in Great
Britain. In Proc. Meeting held in Nairn, Inverness, 30 March
to 1 April (D.J. Mellor, A.M. Russell & J.L.N. Wood, eds).
Society for Veterinary Epidemiology and Preventive
Medicine, 234-244.

19. Cliff A.D. & Ord J.K. (1981). – Spatial processes: models and
applications. Pion Press, London.

20. Corner L.A., Pfeiffer D. & Morris R.S. (2003). – Social-
network analysis of Mycobacterium bovis transmission among
captive brushtail possums (Trichosurus vulpecula). Prev. vet.
Med., 59, 147-167.

21. De Nooy W., Mrvar A. & Batagelj V. (2005). – Exploratory
social network analysis with Pajek. Cambridge University
Press, New York.

22. Dent J.E., Kao R.R., Kiss I.Z., Hyder K. & Arnold M. (2008).
– Contact structures in the poultry industry in Great Britain:
exploring transmission routes for a potential avian influenza
virus epidemic. BMC vet. Res., 4, 27.

23. Dubé C., Ribble C., Kelton D. & McNab B. (2008). –
Comparing network analysis measures to determine potential
epidemic size of highly contagious exotic diseases 
in fragmented monthly networks of dairy cattle movements
in Ontario, Canada. Transbound. emerg. Dis., 55, 382-392.

24. Dubé C., Ribble C., Kelton D. & McNab B. (2009). – 
A review of network analysis terminology and its application
to foot-and-mouth disease modelling and policy
development. Transbound. emerg. Dis., 56, 73-85.

25. Erdös P. & Renyi A. (1960). – On the evolution of random
graphs. Magy. Tud. Akad. Mat. Kut. Intéz. Kolz., 5, 17-61.

26. Faloutsos M., Faloutsos P. & Faloutsos C. (1999). – 
On power-law relationships of the Internet topology. 
In Proc. Conference of the Special Interest Group on Data
Communication: SIGCOMM ‘99. Applications, technologies,
architectures, and protocols for computer communication.
Association of Computing Machinery, New York, 
251-262. Available at: doi.acm.org/10.1145/316188.316229. 

27. Freeman L.C. (1978/1979). – Centrality in social networks:
conceptual clarification. Soc. Networks, 1, 215-239.

28. Hägerstrand T. (1969). – Innovation diffusion as a spatial
process. University of Chicago Press, Chicago.

29. Harvey N., Reeves A., Schoenbaum M.A., 
Zagmutt-Vergara F.J., Dubé C., Hill A.E., Corso B.A., 
McNab W.B., Cartwright C.I. & Salman M.D. (2007). – The
North American Animal Disease Spread Model: a simulation
model to assist decision making in evaluating animal disease
incursions. Prev. vet. Med., 82, 176-197.

30. Huerta R. & Tsimring L.S. (2002). – Contact tracing and
epidemics control in social networks. Phys. Rev. E,
66, 056115.

31. Kao R.R., Danon L., Green D.M. & Kiss I.Z. (2006). –
Demographic structure and pathogen dynamics on the
network of livestock movements in Great Britain. Proc. roy.
Soc. Lond., B, biol. Sci., 273, 1999-2007.

32. Kao R.R., Green D.M., Johnson J. & Kiss I.Z. (2007). –
Disease dynamics over very different time-scales: foot-and-
mouth disease and scrapie on the network of livestock
movements in the UK. J. roy. Soc., Interface, 4, 907-916.

33. Keeling M.J. & Eames K.T. (2005). – Networks and epidemic
models. J. roy. Soc., Interface, 2, 295-307.

34. Kermack W.O. & McKendrick A.G. (1927). – A contribution
to the mathematical theory of epidemics. Proc. roy. Soc. Lond.,
B, biol. Sci., 115, 700-721.

35. Kiss I.Z., Green D.M. & Kao R.R. (2006). – The effect of
contact heterogeneity and multiple routes of transmission on
final epidemic size. Math. Biosci., 203, 124-136.

36. Kiss I.Z., Green D.M. & Kao R.R. (2006). – Infectious disease
control using contact tracing in random and scale-free
networks. J. roy. Soc., Interface, 3, 55-62.

37. Kiss I.Z., Green D.M. & Kao R.R. (2006). – The network of
sheep movements within Great Britain: network properties
and their implications for infectious disease spread. J. roy.
Soc., Interface, 3, 669-677.

38. León E.A., Stevenson M.A., Duffy S.J., Ledesma M. & 
Morris R.S. (2006). – A description of cattle movements in
two departments in Buenos Aires province, Argentina. Prev.
vet. Med., 76, 109-120.

39. Liljeros F., Edling C.R., Amaral L.A.N., Stanley H.E. & 
Aberg Y. (2001). – The web of human sexual contacts. Nature,
411, 907-908.

Rev. sci. tech. Off. int. Epiz., 30 (2) 435



40. Lockhart C.Y., Stevenson M.A., Rawdon T.G., Gerber N. &
French N.P. (2010). – Patterns of contact within the New
Zealand poultry industry. Prev. vet. Med., 95, 258-266.

41. Martinez-Lopez B., Perez A.M. & Sánchez-Vizcaíno J.M.
(2009). – Social network analysis. Review of general concepts
and use in preventive veterinary medicine. Transbound. emerg.
Dis., 56, 109-120.

42. Milgram S. (1967). – The small world problem. Psych. Today,
2, 60-67.

43. Newman M.E.J. (2003). – Properties of highly clustered
networks. Phys. Rev. E, 68, 026121-1–026121-4.

44. Ortiz-Pelaez A., Pfeiffer D.U., Soares-Magalhães R.J. &
Guitian F.J. (2006). – Use of social network analysis to
characterize the pattern of animal movements in the initial
phases of the 2001 foot and mouth disease (FMD) epidemic
in the UK. Prev. vet. Med., 76, 40-55.

45. Pastor-Satorras R. & Vespignani A. (2002). – Epidemic
dynamics in finite size scale-free networks. Phys. Rev. E., 
65, 035108(R).

46. Perez A.M., Ward M.P., Charmandarián A. & Ritacco V.
(2002). – Simulation model of within-herd transmission of
bovine tuberculosis in Argentina dairy herds. Prev. vet. Med.,
54, 361-372.

47. Redner S. (1998). – How popular is your paper? An 
empirical study of the citation distribution. Eur. Phys. J., B, 
4, 131-134.

48. Robinson S.E. & Christley R.M. (2007). – Exploring the role
of auction markets in cattle movements within Great Britain.
Prev. vet. Med., 14, 21-37.

49. Robinson S.E., Everett M.G. & Christley R.M. (2007). –
Recent network evolution increases the potential for large
epidemics in the British cattle population. J. roy. Soc.,
Interface, 4, 587-762.

50. Sanson R.L. (1993). – The development of a decision support
system for an animal disease emergency, Unpublished PhD
thesis, Massey University, Palmerston North, New Zealand.

51. Sanson R.L. (2005). – A survey to investigate movements off
sheep and cattle farms in New Zealand, with reference to the
potential transmission of foot-and-mouth disease. N.Z. vet. J.,
53, 223-233.

52. Sanson R.L., Struthers G., King P., Weston J.F. & Morris R.S.
(1993). – The potential extent of foot-and-mouth disease: 
a study of the movements of animals and materials 
in Southland, New Zealand. N.Z. vet. J., 41, 21-28.

53. Shirley M.D.F. & Rushton S.P. (2005). – The impacts 
of network topology on disease spread. Ecol. Complex., 
2, 287-299.

54. Shirley M.D.F. & Rushton S.P. (2005). – Where diseases and
networks collide: lessons to be learnt from a study 
of the 2001 foot-and-mouth epidemic. Epidemiol. Infect., 
133, 1023-1032.

55. Volkova V.V., Howey R., Savill N.J. & Woolhouse M.E.J.
(2010). – Sheep movements and the transmission 
of infectious diseases. PLoS ONE, 5, e11185.

56. Wasserman S. & Faust K. (1994). – Social network analysis:
methods and applications. Cambridge University Press, New
York.

57. Watts D.J. & Strogatz S.H. (1998). – Collective dynamics 
of ‘small-world’ networks. Nature, 393, 440-442.

58. Webb C.R. (2005). – Farm animal networks: unravelling the
contact structure of the British sheep population. Prev. vet.
Med., 68, 3-17.

59. Webb C.R. (2006). – Investigating the potential spread 
of infectious diseases of sheep via agricultural shows in Great
Britain. Epidemiol. Infect., 134, 31-40.

60. Webb C.R. & Sauter-Louis C. (2002). – Investigations into
the contact structure of the British Sheep population. In Proc.
Meeting of the Society for Veterinary Epidemiology and
Preventive Medicine, 3rd to 5th April, Cambridge, 10-20.

Rev. sci. tech. Off. int. Epiz., 30 (2)436


