The impact of importation of live ruminants on the epizootiology of foot and mouth disease in Saudi Arabia

I.H.A. Abd El-Rahim (1,2)*, A.H. Asghar (1), A.M. Mohamed (3,4) & S.M. Fat’hi (5,6)

(1) Department of Environmental and Health Research, the Custodian of the Two Holy Mosques Institute for Hajj and Umrah Research, Umm Al-Qura University, P.O. Box 6287, 21955 Makkah Al-Mukaramah, Saudi Arabia
(2) Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Assiut University, 71526 Assiut, Egypt
(3) Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 7607, 21955 Makkah Al-Mukaramah, Saudi Arabia
(4) Clinical Laboratory Diagnosis, Department of Animal Medicine, Faculty of Veterinary Medicine, Assiut University, 71526 Assiut, Egypt
(5) Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassem University, P.O. Box 6622, 51452 Buriadh, Saudi Arabia
(6) Department of Meat Hygiene, Faculty of Veterinary Medicine, Assiut University, 71526 Assiut, Egypt
* Corresponding author: vetrahim@yahoo.com

Summary
Approximately five million live ruminants are imported annually into Saudi Arabia. The majority of these animals are imported shortly before the pilgrimage season from Sudan and the Horn of Africa, where foot and mouth disease (FMD) is known to be enzootic. This study was designed to investigate the impact of the importation of these live ruminants on the epizootiology of FMD in Saudi Arabia. The authors carried out antibody testing on a total of 480 sheep and 233 cattle from the sacrificial livestock yards of the Saudi Project for Utilization of Hajj Meat, which performs ritual slaughter on behalf of pilgrims in the Holy City of Makkah. The results revealed that 136 (28.3%) of the 480 sheep tested were serologically positive for FMD, using an indirect enzyme-linked immunosorbent assay (ELISA) (3ABC FMD ELISA). This included 17.7% of Sawakani sheep (imported from Sudan) and 40.9% of Barbari sheep (imported from the Horn of Africa). Among the cattle, 120 (51.5%) of 233 animals tested positive for FMD virus (FMDV) antibodies. The 120 seropositive cattle included all clinically suspected cattle and 62 (35.4%) symptom-free, in-contact cattle. The findings highlight the risks associated with the annual importation of live ruminants from FMD-enzootic areas. The risks include the possible introduction of new exotic FMDV serotypes, particularly when potential carriers or subclinically infected animals are considered. An understanding of the epidemiology of different strains and the ability to track their movement between geographical regions is essential for the development of efficient control strategies for the disease. Therefore, genotyping of FMDV strains isolated from imported and local animals is recommended.

Keywords

Introduction
International trade in animals and their products has been recognised as a primary determinant of the global epidemiology of transboundary diseases such as foot and mouth disease (FMD) (1). Saudi Arabia imports several million live ruminants for slaughter annually. The majority of these animals are imported from countries where FMD virus (FMDV) is enzootic. Particular emphasis has been placed on the possibility of importing either carrier animals, which may act as a potential source of infection, or subclinically infected animals, which may actively excrete FMDV (2). Serotypes of FMDV that are not incorporated in the vaccine currently used in Saudi Arabia (e.g. SAT 1 and SAT 2) are prevalent in some of these exporting countries.
Moreover, in some other exporting countries, the prevalent FMDV serotypes are not routinely typed (3).

Over a period of five years, from July 1999 to June 2004, five outbreaks of FMD serotype O and one outbreak of FMD serotype SAT 2 were reported among livestock in Saudi Arabia. Four of these outbreaks were limited to cattle, while the other two involved all livestock species, including cattle, sheep and goats. With regard to distribution, the two extensive outbreaks of FMD virus serotype O were recorded in the five regions of the country (central, eastern, western, northern and southern) in February to April 2001 and August to November 2001, while two of the three limited outbreaks involving FMDV serotype O occurred only in the central region during October and November 1999 and in March and April 2000. The last serotype O outbreak was reported in the southern region (Jizan) in June 2004. Infection with FMDV serotype SAT 2 was reported for the first time in Saudi Arabia during an outbreak of FMDV serotype O in the central region (Al-Karj, Riyadh) from March to April 2000 (4).

Between November 1989 and October 1991, neutralising antibodies against FMDV serotypes O, A and/or Asia 1 were detected in serum samples collected from some non-vaccinated indigenous ruminants raised in different regions of Saudi Arabia (3). The importance of investigating the current epizootiological status of FMD in Saudi Arabia, in order to aid planning to improve national control measures, has been clearly demonstrated (5).

Small ruminants play an important role in the epidemiology and transmission of FMDV because the clinical signs of FMD in adult sheep and goats are frequently mild or inapparent (6, 7, 8). Sheep have often been implicated as disseminators of FMDV, both between and within countries. Moreover, sheep and goats may act as carriers: infected herds kept by owners who practise transhumance methods or are nomadic can spread the infection to other herds long before the diagnosis of the disease is established. Shipping and trade involving live sheep and goats is much more common than trade in other FMD-susceptible species. Moreover, in some other exporting countries, the prevalent FMDV serotypes are not routinely typed (3).

There is evidence that recurrent FMDV outbreaks in Saudi Arabia may be attributed to the importation of ruminants from countries where FMD is enzootic, particularly during the Hajj season. Such imported animals may be FMDV carriers or subclinical cases, or may show suspicious FMD lesions, as recorded during the Hajj season of 1432 H (2011) (10). This study aims to record the FMD seroprevalence among imported live ruminants and to describe the impact on the epizootiology of the disease in the kingdom of Saudi Arabia, especially in Makkah, where about one million of these imported animals are slaughtered annually during the Hajj season. Furthermore, prevention and control strategies for FMD in Saudi Arabia, particularly in Makkah and during Hajj seasons, are discussed.

Materials and methods

Sample population

A total of 713 sacrificial animals (233 cattle and 480 sheep) were selected from the sacrificial livestock yards of the Saudi Project for Utilization of Hajj Meat (ADAHI), in the Holy City of Makkah, during the pilgrimage season 1433 H (24–29 October 2012). The project was established in 1983 (1403 H) as a means of assisting pilgrims by performing the ritual of Odhiya and Sadaqa on their behalf. Meat is distributed among the poor in Makkah and excess quantities are exported to eligible beneficiaries in several countries. The ADAHI complex consists of eight slaughterhouses, seven of which (Moaisem 1, Moaisem 2, Moaisem 3, Unit B, Unit D, Unit E and Unit F) are for small ruminants and one (Moaisem 4) for camels and cattle. Annually, about one million ruminants, most of them sheep and goats, are slaughtered in these slaughterhouses within a four-day period during the time of the religious festival Eid al-Adha, which begins on the tenth day of Dhu Al-Hijjah (the last month of the Islamic calendar) and ends on the 13th day (in the international calendar the dates vary slightly from year to year).

All of the 233 cattle tested were of African origin, 58 of them were chosen from animals showing clinical signs of FMD and no legal importation certificates were associated with these. The remaining 175 animals were chosen from cattle not exhibiting clinical signs of FMD. Sheep were randomly selected and showed no clinical signs of FMD. The selected sheep included 260 of the Sawakani breed (imported from Sudan) and 220 of the Barbari breed (imported from the Horn of Africa). Both Sawakani and Barbari sheep were imported shortly before the Hajj season through the Djibouti livestock quarantine centre and Jeddah Islamic port.

Blood samples were collected from the jugular veins of all animals. The sera were harvested from blood samples on the day of collection and kept at –80°C until the time of serological testing.

Serological surveillance of foot and mouth disease among sacrificial animals

An enzyme-linked immunosorbent assay, the 3ABC FMD ELISA (IDEXX Laboratories, Inc., USA, Part Number:
FBT1139T), was used for serological testing of both bovine and ovine sera. The test detects antibodies to the non-structural FMDV protein 3ABC. The test accurately detects infection while differentiating infected from marker-vaccinated animals. The serological assay was carried out as recommended by the manufacturer in the microbiology laboratory of the Environmental and Health Research Department of the Custodian of the Two Holy Mosques Institute for Hajj and Umrah Research at Umm Al-Qura University in Makkah, Saudi Arabia.

Results

Epizootiological aspects

Approximately five million live ruminants are imported annually into Saudi Arabia for slaughter. The majority of these animals are imported from Sudan and the Horn of Africa, where FMD is enzootic. Importation occurs through sea transportation from the animal quarantine centre in Djibouti to Jeddah Islamic port (Fig. 1).

Most of the imported ruminants are sheep and goats. About one million of them are used as sacrificial animals for slaughter in Makkah around the time of Eid al-Adha. Two sheep breeds are usually imported, the Sawakani breed (imported from Sudan) and the Barbari breed (mainly imported from the Horn of Africa). The sheep included in the study were of known origin and were accompanied by legal importation certificates.

The African cattle in the study were of unknown sources and no legal importation certificates were associated with them. They were illegally transported from the southern region of Saudi Arabia (Jizan region) into Makkah (the western region) shortly before the Hajj season of 1433 H. Fifty-eight of the 233 cattle (24.9%) showed classical clinical signs of FMD. Importation of infected African cattle increases the risk of introduction of exotic FMDV serotypes into Saudi Arabia. Illegal movement of diseased cattle increases the risk of FMDV dissemination. In addition, open housing of these cattle in the livestock yards of the ADAHI complex may spread infection to all sacrificial animals.

Fig. 1
Importation of live ruminant animals into Saudi Arabia
Clinical examination

Thorough clinical examinations revealed that about one-quarter (24.9%) of the investigated cattle were FMD suspect cases. The reported clinical signs included high fever (40–41.5°C), depression, dullness and loss of appetite. Affected cattle were weak and emaciated. Inflammation around the nostrils was a common sign (Fig. 2). Some of the diseased cattle had vesicles (Fig. 3) with the consequent ropy salivation (Fig. 4). Vesicles in the interdigital space (Fig. 5) with lameness were also observed. These animals suffered pain in the standing position and were reluctant to move. No clinical signs of the disease were noticed in the sheep.

Seroprevalence of foot and mouth disease among sacrificial animals

The results of the serological investigations revealed serological evidence of FMD infection in 256 (35.9%) of the 713 sacrificial animals. This included 136 (28.3%) of 480 sheep and 120 (51.5%) of 233 cattle (Table I). In sheep, 17.7% of the Sawakani breed (46/260) (imported from Sudan) and 40.9% of the Barbari breed (90/220) (imported from the Horn of Africa) were serologically positive for FMD. All clinically suspected cattle were seropositive, while 35.4% of apparently healthy in-contact cattle (62/175) were serologically positive.

Table I
Seropositive foot and mouth disease cases among animals imported for sacrifice

<table>
<thead>
<tr>
<th>Investigated animals</th>
<th>No. of animals</th>
<th>Seropositive cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle with clinical signs</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>Cattle without clinical signs</td>
<td>175</td>
<td>62</td>
</tr>
<tr>
<td>Subtotal (cattle)</td>
<td>233</td>
<td>120</td>
</tr>
<tr>
<td>Sawakani sheep (from Sudan)</td>
<td>260</td>
<td>46</td>
</tr>
<tr>
<td>Barbari sheep (from the Horn of Africa)</td>
<td>220</td>
<td>90</td>
</tr>
<tr>
<td>Subtotal (sheep)</td>
<td>480</td>
<td>136</td>
</tr>
<tr>
<td>Total (cattle and sheep)</td>
<td>713</td>
<td>256</td>
</tr>
</tbody>
</table>
Discussion

Outbreaks of FMD are a primary animal health concern worldwide because the disease is highly contagious and causes productivity losses among infected animals (11). In Saudi Arabia, approximately five million live ruminants are imported annually, mostly from FMD-enzootic African countries. Moreover, the intensified importation of at least two million of these animals shortly before the pilgrimage season every year for sacrifice represents a great potential risk for the introduction of new FMDV serotypes, especially into the Holy City of Makkah (4), with subsequent possible outbreaks. The importation of animals is also a risk factor for FMD introduction in many other countries, e.g. it was reported that the importation of Irish veal calves into the Netherlands via an FMD-contaminated staging point in France was the most likely route of transmission of the 2001 FMD outbreak (12). Moreover, an exotic SAT 2 FMDV of topotype VII was characterised in Egypt as the cause of the widespread field outbreaks seen during February and March 2012 (13). These newly emerged viruses were genetically closely related to strains isolated from Saudi Arabia, Sudan, Eritrea and Cameroon between 2000 and 2010, suggesting the dominant nature of this virus and underscoring the need for worldwide intensive surveillance to avoid devastating consequences (14).

Foot and mouth disease in adult sheep and goats is frequently mild or inapparent, with no distinct clinical signs, and therefore the diagnosis can easily be missed (15, 16). Several cases have been reported in the past where small ruminants were held responsible for the introduction of FMD into previously disease-free countries (8). The reasons for considering small ruminants as a risk factor that could play an important role in the epidemiology and transmission of FMD include the fact that sheep and goats are the usual carriers of the disease (9) and that FMD is difficult to diagnose clinically in these animals. Such unrecognised FMDV infection in sheep may represent a potential risk for the spread of the disease (17). In Saudi Arabia, most of the imported live ruminants are sheep and goats, and these represent the majority of the sacrificial animals in Makkah during the pilgrimage season. Most of these animals are imported from FMD-enzootic African countries with poor quarantine measures. In this study, none of the sheep and goats showed clinical signs of FMD. The inapparent nature of FMD in sheep and goats represents a high risk for the introduction of new exotic FMDV topotypes from Africa into Saudi Arabia.

In cattle, FMD is usually clinically obvious, especially in the unvaccinated herds of countries in which the disease occurs only occasionally (18). This study reported FMD in African cattle in Makkah with obvious clinical signs of the disease. Typical FMD clinical signs, including inflammation around the nostrils, vesicles, ropy salivation and lameness, were reported. Clinical FMD infections, under certain climatic and epidemiological conditions, can be transmitted by a variety of mechanisms, including windborne spread (19). In this study, the reported open housing system for the diseased cattle in the livestock yards represents another important risk factor for the disease epizootiology in Makkah, leading to the possibility of rapid spread of the infection, not only to all the sacrificial ruminants in Makkah, but also to other susceptible animals in the western region of Saudi Arabia.

Unlike animals which are carriers of FMD, subclinically infected animals may be highly contagious. The spread of FMD in the United Kingdom in 2001 and the subsequent spread of the disease to other countries show that subclinical infections make trade in animals or animal products a potential hazard for importing countries. The importation of subclinically infected animals has serious implications for the control of FMD, because such animals are likely to disseminate the disease when in contact with susceptible livestock (1). In Saudi Arabia, illegal movements of cattle of African origin from the southern region (Jizan region) into the western region (Makkah region) shortly before the Hajj season of 1433 H represented a high potential risk for FMDV dissemination. Control of animal movements is one of the most important measures for a successful FMD eradication strategy (20).

The detection of antibody to non-structural proteins (NSPs) of FMDV can be used to identify past or present infection with any of the seven serotypes of the virus, whether or not the animal has also been vaccinated. Therefore, the tests can be used to confirm suspected cases of FMD and to detect viral activity or substantiate freedom from infection on a population basis. For certifying animals for trade, the tests have an advantage over structural protein (SP) methods, because the serotype of the virus does not have to be known (21). Antibodies to the polyproteins 3AB or 3ABC are generally considered to be the most reliable indicators of infection (22). In this study, the FMD 3ABC test was used for accurate detection of infection, differentiating infected from marker-vaccinated animals. The detection of antibodies to NSPs of FMDV is the preferred diagnostic method to distinguish virus-infected carrier animals from vaccinated animals (23, 24, 25). Serological tests, such as those for antibodies to NSPs or specific immunoglobulin A (IgA), provide increased security by reducing the likelihood of trading carrier animals and can be used to help define the limits of an outbreak (26). It has been demonstrated that the 3ABC ELISA is able to detect antibodies indicative of infection with FMDV in asymptomatic sheep under field conditions (17).

In the current study, laboratory investigations revealed serological evidence of FMD infection in 256 (35.9%)...
of 713 sacrificial animals. In the previous year, during the
pilgrimage season of 1432 H (4–9 November 2011)
in Makkah, 14 (0.78%) suspected cases of FMDV were
recorded among 1,800 inspected cattle (11). A serological
survey for FMD among vaccinated indigenous ruminants
raised in different regions of Saudi Arabia was carried out by
Hafez et al. (3). Among serum samples from 5,985 sheep,
1,371 goats, 1,052 cattle and 694 ruminants of unspecified
species, precipitating antibodies against FMDV were
detected in 1,209 (20%), 127 (9%), 172 (16%) and 38 (5%)
samples, respectively.

In the current study, 46 (17.7%) of 260 Sawakani sheep
(imported from Sudan) and 90 (40.9%) of 220 Barbari
sheep (imported from the Horn of Africa) were serologically
positive for FMD. None of these sheep showed clinical
signs of FMD. On the other hand, all cattle that showed
suspected clinical signs of FMD were serologically positive
for FMDV antibodies, while 62 (35.4%) of 175 apparently
healthy in-contact cattle also showed serological evidence
of FMD infection. Hafez et al. (3) concluded that the high
percentage of positive serological test results in sheep and
goats in many regions of Saudi Arabia, in the absence of
clinical FMD among these species, indicates the importance
of these range animals in transmitting FMDV between
regions within the country.

The most appropriate approach to FMD control would be to
prevent infected animals from entering the principal trading
routes for susceptible animals (27). The Terrestrial Animal
Health Code (Terrestrial Code) of the World Organisation
for Animal Health (OIE) makes recommendations for
international movements of live animals and animal
products with regard to a possible generic risk of FMD for
these different commodities (28, 29). The current study
suggests that the recommendations of the Terrestrial Code
for international movements of live animals should be
strictly applied during the importation of live animals into
Saudi Arabia.

Molecular epidemiological studies on FMD in Saudi Arabia
are needed. In Egypt, during the 2006 outbreak, the results
of molecular typing suggested a relationship between
strains of Egyptian and East African origin. The molecular
typing confirmed only that, through the trade in live
cattle, an East African type A strain had been introduced
which was not contained at the quarantine station. The
origin of the infection was unclear, because the animals in
quarantine may have acquired infection at various points
during shipment, including on board the ship (possibly
from contaminated pens or other animals), at the port
before loading, or in transit from Ethiopia to the port of
loading (30). Therefore, isolation and genotyping of FMDV
serotypes is recommended and will be considered in the
authors’ future work.

Any country experiencing an outbreak of FMD can expect
questions or trade restrictions from regular trading partners
(31). The need for approximately one million sheep and
goats for slaughter within a very short time (four days)
during the Hajj season every year requires Saudi Arabia to
import ruminant animals from Africa, although FMD is a
constant threat to animal agriculture worldwide and must
always be considered when defining policies concerning
the trade of live animals and animal products (32). Six of
the seven serotypes of FMDV (all but Asia 1) are prevalent
in Africa (33). In addition, the FMD diagnostic capacity in
eastern Africa is still inadequate (34).

Foot and mouth disease control should increasingly be
considered from a global perspective (35, 36). The disease
affects livestock throughout the world, particularly those in
poorer countries. In many places little is done to control
FMD, largely due to a lack of resources and a failure to
recognise the benefits that control brings. In many countries,
FMD prevents agricultural development and reduces food
security; it may also cause major losses due to control
costs and in some cases by limiting access to export markets (37).
For control of FMD in the Middle East and North Africa,
coordinated epidemiological studies leading to a common
control policy should be implemented and supported by
the international community (38). An international aid
programme for control of FMD in poorer African countries
will help these countries to export live animals and
subsequently will increase development opportunities.

Conclusions and recommendations

There is evidence that the introduction of several exotic or
other serotypes of FMDV into Saudi Arabia has occurred
through the intensive importation of live ruminants from
Sudan and the Horn of Africa, where FMD is enzootic,
particularly shortly before Hajj seasons. Imported animals,
especially sheep, may be FMDV carriers or have subclinical
infections.

This study suggests the following recommendations that
may contribute to decreasing the risk of importation of
exotic FMDV serotypes into Saudi Arabia:
– prohibition of the importation of live ruminants from
African countries where FMD is enzootic
– serological screening of the live ruminant animals at
the Djibouti quarantine station before exportation, for
exclusion of all seropositive (infected or carrier) cases
– improvement of import controls, including quarantine,
at Jeddah Islamic port
L’impact des importations de ruminants vivants sur l’épizootiologie de la fièvre aphteuse en Arabie saoudite

I.H.A. Abd El-Rahim, A.H. Asghar, A.M. Mohamed & S.M. Fat’hi

Résumé
Environ 5 millions de ruminants vivants sont importés chaque année par l’Arabie saoudite. La plupart de ces importations ont lieu peu avant la saison du pèlerinage (hajj) et proviennent du Soudan et de la Corne de l’Afrique, où la fièvre aphteuse est réputée endémique. Les auteurs ont élaboré une étude visant à déterminer l’impact de ces importations de ruminants vivants sur l’épizootiologie de la fièvre aphteuse en Arabie saoudite. Pour ce faire, ils ont testé 480 moutons et 233 bovins appartenant au cheptel d’animaux destinés à l’abattage du Projet saoudien d’utilisation de la viande sacrificielle, qui effectue l’abattage rituel pour le compte des pèlerins de la ville sainte de La Mecque. Le test sérologique utilisé était une épreuve immuno-enzymatique de détection d’anticorps dirigés contre la protéine 3ABC (3ABC FMD ELISA). Sur les 480 moutons testés, 136 (28,3 %) ont donné des résultats positifs. Les moutons trouvés positifs étaient pour 17,7 % d’entre eux, de race sawakani (importés du Soudan) et pour 40,9 % de race barabarine (importés de la Corne de l’Afrique). Concernant les bovins, 120 (51,5 %) des 233 bovins testés possédaient des anticorps dirigés contre la fièvre aphteuse. Parmi ces 120 bovins séropositifs figuraient tous les cas cliniquement suspects, mais aussi 62 bovins (35,4 %) qui ne présentaient aucun signe clinique et qui avaient été exposés naturellement à l’infection. Ces résultats mettent en exergue l’existence des risques associés aux importations annuelles de ruminants vivants en provenance de régions où la fièvre aphteuse est enzootique. Ce risque comprend celui d’une introduction de sérotypes exotiques nouveaux du fait de la présence de porteurs potentiels ou d’animaux infectés asymptomatiques. Pour mettre en place des stratégies de lutte efficaces contre la fièvre aphteuse, il est nécessaire de bien comprendre l’épidémiologie des différentes souches et d’être en mesure de les suivre à mesure qu’elles se propagent d’une région à l’autre. Il est donc recommandé de procéder à la caractérisation des génotypes des souches du virus de la fièvre aphteuse isolées chez les animaux importés et autochtones.

Mots-clés
Efectos de la importación de rumiantes vivos en la epizootiología de la fiebre aftosa in Arabia Saudí

I.H.A. Abd El-Rahim, A.H. Asghar, A.M. Mohamed & S.M. Fat’hi

Resumen
Cada año Arabia Saudí importa aproximadamente 5 millones de rumiantes vivos. En su gran mayoría esos animales son importados, poco antes de la temporada de peregrinajes, desde el Sudán y el Cuerno de África, regiones donde la fiebre aftosa, según se sabe, es enzootica. Los autores refieren un estudio encaminado a analizar los efectos de la importación de esos rumiantes vivos sobre la epizootiología de la fiebre aftosa en Arabia Saudí. Utilizando un ensayo inmunoenzimático (ELISA) indirecto (detección de anticuerpos contra la poliproteína 3ABC del virus), se practicaron pruebas de detección de anticuerpos a un total de 480 ovejas y 233 vacunos procedentes de los establos de sacrificio del proyecto saudí para la utilización de carne «halal», donde se practican sacrificios rituales en nombre de los peregrinos que llegan a la ciudad santa de La Meca. Los resultados revelaron que 136 (un 28,3%) de las 480 ovejas eran seropositivas para la fiebre aftosa, de las cuales un 17,7% eran ovejas sawakani (importadas del Sudán) y un 40,9% ovejas barbarinas (importadas del Cuerno de África). Por lo que respecta a los vacunos, resultaron positivos a los anticuerpos contra el virus de la fiebre aftosa 120 (un 51,5%) de los 233 animales. Entre esos 120 seropositivos estaban todos los ejemplares clínicamente sospechosos y 62 (un 35,4%) asintomáticos, que eran contactos naturales. Los resultados ponen de manifiesto los riesgos ligados a la importación anual de rumiantes vivos desde zonas donde la fiebre aftosa es enzootica. Entre ellos figura el riesgo de introducir nuevos serotipos exóticos del virus, sobre todo si se tiene en cuenta la existencia de posibles portadores o animales con infección asintomática. Para concebir e instituir estrategias eficaces de lucha contra la enfermedad es fundamental entender la epidemiología de las diferentes cepas y poder seguir sus movimientos entre regiones geográficas. Es recomendable, por lo tanto, determinar el genotipo de las cepas víricas que se aislen en animales importados y locales.

Palabras clave

References

