EURL Capripox
Work programme 2018

Annebel De Vleeschauwer, Céline Demarez
Andy Haegeman, Ilse De Leeuw
Charlotte Sohier, Laurent Mostin, Willem van Campe
Elisabeth Mathijs, Frank Vandenbussche, Steven Van Borm
Kris De Clercq
Assist EC and Countries

o Technical input
 • Lab protocols for laboratories

o Trainings on the request of a country: Kazakhstan

o Missions:
 • EUVET (CVET) Expert mission Sheeppox Greece
 • GFTADs Expert mission LSD Kazakhstan
 • STM (Sustained Technical assistance) mission LSD Ukraine
 • STM mission LSD Belarus
 • OIE Seminar LSD Kazakhstan
 • Workshop Sheeppox for Greece & Bulgaria
Tender for vaccines to include in the EU vaccine bank for LSD

- Independent Vaccine Quality control
 1. Identity of the vaccine strain
 2. Titration of vaccine strain
 3. Freedom from extraneous agents
 - Evidence of absence of bacterial, fungal or mycoplasmal contaminants
 - Evidence of absence of viral contaminants
 e.g. FMD, BTV, EHDV, BVD, BDV, SPPX, GTPX, Lentiviruses (Maedi-visna virus, Bovine leucosis virus)
PROFICIENCY TESTING 2018

CAPRIPOX VIRUS (CAPX)

Detection of specific antibodies to capripox viruses in serum and/or
Detection of capripox virus nucleic acid in cell culture supernatant and tissue homogenate.

Results presented to NRLs at EURL annual meeting
Montpellier, 12/10/2018
Diagnostic tests to be used for active surveillance purposes

Clinical detection: Sensitivity detecting clinical signs in the first 3 weeks after infection: 67-75%

PCR test of blood or skin: diagnostic sensitivity 90-100% in blood and 95-100% in tissues

ELISA and IPMA: antibodies after 1 month
- Experimentally vaccinated or infected animals:
 - ELISA: Se = 83%; Sp = 99.7%
 - IPMA: Se = 100%; Sp = 100%
- Under field conditions:
 - ELISA: Se = 59%; Sp = 99.7%
 - IPMA: Se = 53%; Sp = 100%

Serbia and FYROM studies: ELISA Se 75-80% / Milk ELISA
Improved methods for capripox virus diagnosis with focus on molecular DIVA tests to differentiate field virus strains from vaccine strains

Vaccination with Herbivac® LS from Deltamune

A clear Neethling-like response was seen around 8/9 dpv with the appearance of noduli-like structures in 75% of the animals

PanPCR positive blood samples, biopsies and organ/tissue samples can be used for the evaluation of the DIVA real-time PCR
Evaluation of the DIVA real-time PCR

✓ Biopsies and Tissues (n=47)

⇒ good correlation between both real-time PCRs in the Capx Cp range of 15 to 30 (average difference in Cp of 1.4)
Evaluation of the DIVA real-time PCR

✓ Biopsies and Tissues (n=47)

✓ 13 samples (28%) negative with the DIVA real-time PCR
 ➤ inhibition?
 ➤ DNA extracts 1/10 diluted
 ➤ DIVA-PCR: positive results (vaccine-type)

Conclusion: inhibition in pure DNA samples!

✓ All samples were correctly identified and typed by the DIVA real-time PCR as vaccine strain
Evaluation of the DIVA real-time PCR

✓ Blood samples (n=25)

✓ All samples had a low viral load (Cp > 35) with the panCapx panel of Haegeman et al. 2015

✓ Only 40% of the samples were detected with the DIVA real-time PCR of Agianniotaki et al (2017), but all were correctly identified as vaccine type
Conclusions DIVA evaluation

✓ DIVA real-time PCR: suited for detection and typing of vaccine LSDV in samples with a high (vaccine) viral load, such as skin lesions / nodules

✓ Nodules samples or scabs/tissue: inhibition needs to be kept in mind, diluting the DNA samples 1/10 is recommended

✓ Blood or swabs are not recommended for the confirmation of Neethling like response: vaccine viremia or shedding can be low and missed
Experimental evidence of mechanical transmission of lumpy skin disease virus by biting Arthropods

Method:
Set up in vivo experiment 1

<table>
<thead>
<tr>
<th>Exp 1</th>
<th>4 Donor animals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D1</td>
</tr>
<tr>
<td></td>
<td>D2</td>
</tr>
<tr>
<td></td>
<td>D3</td>
</tr>
<tr>
<td></td>
<td>D4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8 Acceptor animals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dermacentor reticulatus</td>
</tr>
<tr>
<td>Fed on donor animals</td>
</tr>
<tr>
<td>A1</td>
</tr>
</tbody>
</table>

100 ♀ +100 ♂ ticks/
cotton bag on ears Donor
for 5-9 days from 5 dpi
=> On Acceptor for 5-7 days

• flies in cages on viremic donor (10 min/day) from
6-9 dpi =>100-200 flies/acceptor from 6-9 dpi (10 min/day)
Results: In vivo experiment 1 with *S. calcitrans*

Donors
- 2 of 4 donor animals viremic
- Only D3 with noduli on 7 dpi
- noduli PCR confirmed

Acceptors
- 1 of 4 acceptors with *S. calictrans* viremic on 9 dpc
- First noduli on 12dpc (PCR confirmed)

First evidence of transmission of LSDV with *S. calcitrans*
Next experiment: => Confirmation with *S. calcitrans*
 => Also possible with the horse fly *Haematopa sp.?*
Method:

Set up in vivo experiment 2

<table>
<thead>
<tr>
<th>Exp 2</th>
<th>5 Donor animals</th>
<th>6 Acceptor animals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D5</td>
<td>D6</td>
</tr>
<tr>
<td></td>
<td>D7</td>
<td>D8</td>
</tr>
<tr>
<td></td>
<td>D9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Haematopota sp.</td>
<td>Stomoxys calcitrans</td>
</tr>
<tr>
<td>Fed on donor animals</td>
<td>Fed on donor animals</td>
<td></td>
</tr>
<tr>
<td>A13</td>
<td>A16</td>
<td>A14</td>
</tr>
<tr>
<td></td>
<td>A14</td>
<td>A15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A18</td>
</tr>
</tbody>
</table>

- Horse flies on viremic donor & acceptor from 7-9 dpi (10 min/day)
- 40 Haematopta sp./on each acceptor
- *S. calcitrans* on viremic donor & acceptor from
 - 6-9 dpi (10 min/day), 100-200 flies/acceptor
 - 15-16 dpi(10 min/day), 100-200 flies/acceptor
Results:
In vivo experiment 2 with *Stomoxys calcitrans*

- 3 of 5 donor animals viremic,
- only D8 an D9 used for *Stomoxys calcitrans*
- Both viremic on 5 dpi
- Noduli: D8 on 8 dpi, D9 on 7 dpi
- Results still in progress (PCR blood)

- 2 of 4 acceptors with *S. calictrans viremic*
- A17 viremic on 15 dpc => viremic from 1st contact
- A15 viremic on 27dpc=> viremic from 1st or 2nd contact
- A 17 noduli on 15 dpc
- A15 noduli on 23 dpc

Re-confirmation of transmission of LSDV with *S. calcitrans*
Results: In vivo experiment 2 with *Haematopota sp.*

- 3 of 5 donor animals viremic,
- only D5 used for *Haematopota sp.*,
- Viremic on 5 dpi, noduli on 7dpi
- Results still in progress (PCR blood)

Donors

- **Acceptors**
 - 1 of 2 acceptors with *Haematopota sp.* positive
 - A16 positive on 26 dpc
 - Noduli on 27 dpc

First evidence of transmission of LSDV with *Haematopota sp*

Next experiment:
If *S. calcitrans* can only bite 1 day 10 min to donor & acceptor, will there be still transmission?
Other Studies

- Duration of Immunity and of Protection
- Subclinical infection
- Transmission studies
 - Indirect and Direct transmission
- Sheeppox Vaccine Evaluation
Thanks to EC for support!

EU Reference Laboratory for Capripox viruses

Funded by the European Union