Prevalence of ovine footrot in the tropical climate of southern India and isolation and characterisation of *Dichelobacter nodosus*

D. Sreenivasulu (1), S. Vijayalakshmi (1), D. Raniprameela (1), A. Karthik (1), S.A Wani (2)* & I. Hussain (2)

(1) Department of Veterinary Microbiology, College of Veterinary Sciences, Sri Venkateswara Veterinary University, Tirupati-517502, Andhra Pradesh, India
(2) Bacteriology Laboratory, Division of Veterinary Microbiology and Immunology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shuhama (Alusteng), Srinagar-190006, Jammu and Kashmir, India
*Corresponding author: shakilwani@gmail.com

Summary

The present communication records the first determination of the prevalence of footrot in the unexpected situation of the tropical climate of Andhra Pradesh and Tamil Nadu, two states in southern India where the maximum temperature rises to 42°C. In total, 73 outbreaks of footrot in Nellore brown sheep were investigated in 11 districts of Andhra Pradesh and one district of Tamil Nadu during the period March 2009 to March 2011. The overall prevalence of ovine footrot was 15%, with severity scores of 2 to 4 (lesion severity scale 0 to 4). The outbreaks occurred mostly during the rainy season, which is usually from June to December. From a total of 1,050 samples of lesions in naturally infected sheep, 478 (45.5%) were positive for *Dichelobacter nodosus*. Serogrouping of the isolates revealed six serogroups: A, B, C, E, F and I. Among the positive samples, 448 (93.7%) were a single serogroup and 30 (6.3%) carried a mixed infection with two serogroups. Taking single and mixed infections together, serogroup B was most frequent at 50.4% and was found in all districts, followed by serogroup I in 29.3% of samples, A in 14%, F in 6.7% and C in 5.6%. Serogroup E was detected in only one sample. Serogroups A and F were detected for the first time in India. All of 58 *D. nodosus* isolates in a sub-sample representing different serogroups were found to be virulent, based on the production of thermostable proteases and the presence of the integrase A gene *intA*. Thus, the present paper reporting isolation and characterisation of *D. nodosus* confirms the occurrence of virulent footrot in the tropical climate of southern India.

Keywords

Introduction

Footrot is a highly contagious and economically important disease of ruminants, especially sheep and goats. The disease is characterised by an exudative inflammation followed by necrosis of the epidermal tissues of the interdigital skin and hoof matrix, which results in separation of the hoof from the underlying soft tissue. Affected animals exhibit lameness, loss of body condition, reduced production of wool and meat, and decreased fertility (1, 2). Footrot is mainly considered a disease of temperate climates with moderate to heavy rainfall. Muddy pastures, frequent rain and foot injuries predispose animals to the infection (2, 3, 4).

The disease results from the synergistic action of several bacterial species, of which *Dichelobacter nodosus* is the
essential causative agent (2). The bacterium is slow growing and requires a special medium under anaerobic conditions. Currently, D. nodosus strains are classified into at least ten serogroups (A–I, M) (5, 6) based on fimbrial antigens. The identification of serogroups of D. nodosus in a footrot lesion previously required isolation and purification of the organism by subculture, followed by antigenic analysis using serological methods, which could take three or four weeks. Polymerase chain reaction (PCR) with 16S ribosomal RNA (rRNA) gene-specific primers is now used for identification of D. nodosus (1) and multiplex PCR (m-PCR) with serogroup-specific primers for serogrouping, without the need for culture (7). Strains of D. nodosus can be categorised as virulent, intermediate or benign (8, 9), based on the production of thermostable proteases and/or the integrase A gene intA, and relate to the corresponding forms of the disease (2).

In India, footrot has been reported only from the Himalayan state of Jammu and Kashmir, where the climate is temperate (10, 11). However, there has been strong suspicion of ovine footrot in the tropical climatic extremes of southern India, based on clinical symptoms and lesions but without any laboratory confirmation. Thus, the aim of the present investigation was to determine the prevalence of footrot, with isolation and characterisation of D. nodosus, in the unexpected situation of tropical Andhra Pradesh and Tamil Nadu states in southern India.

Materials and methods

Inspection of animals

A total of 73 outbreaks of footrot in Nellore brown sheep (a hairy-type meat breed of southern India) reported by local veterinary officers were attended in 11 districts of Andhra Pradesh (Chittoor, Nellore, Kadapa, Kurnool, Guntur, Krishna, Nizamabad, Prakasam, Srikakulum, Mehaboobnagar, Nalgonda) and the Tiruvallur district of Tamil Nadu during the period March 2009 to March 2011. Overall, a total of 16,889 animal feet in 295 household flocks (Table I) were inspected for signs of the disease and scored on a scale of 0 to 4 according to the severity of the lesions (12).

Collection of samples

Sterile cotton swabs were used to collect 1,050 duplicate samples of footrot exudate (Table II) from among the 2,548 animal feet with lesions of severity 2 (interdigital dermatitis) to 4 (under-running of the hard horn of the hoof) on the scale. The samples were taken from the apex of the cleft between the horn of the hoof and the sensitive underlying tissues. One of the samples was inoculated onto a solid medium and the other was used for DNA extraction for direct detection of D. nodosus as described below.

Isolation of Dichelobacter nodosus

Swab samples were immediately streaked onto trypticase arginine serine agar containing 4% hoof powder and placed in anaerobic jars (Hi-Media, India) with gas packs (Becton Dickinson and Company, United States of America [USA]). The jars were transported to the laboratory within 2 h to 3 h and incubated at 37°C. After five days of incubation, suspected colonies were subcultured on the same medium to achieve pure isolates of D. nodosus. Plates that did not show any characteristic growth were incubated for a further five days before being discarded as negative. Colonies were confirmed as D. nodosus by demonstration of the typical cellular morphology in Gram-stained smears and detection of the species-specific 16S rRNA gene in PCR.

Extraction of bacterial DNA

Material present on the swabs was suspended in 100 μl of sterile phosphate buffered saline in 1.5 ml microcentrifuge tubes by gentle vortexing. After removal of the swabs, the samples were boiled for 5 min, cooled on ice
Table I
Prevalence (%) of footrot in sheep in the tropical climate of Andhra Pradesh and Tamil Nadu states in southern India

<table>
<thead>
<tr>
<th>District no.*</th>
<th>District name</th>
<th>No. of footrot outbreaks attended</th>
<th>No. of household flocks examined</th>
<th>No. of animal feet inspected</th>
<th>No. of animal feet affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chittoor</td>
<td>18</td>
<td>86</td>
<td>4,583</td>
<td>824</td>
</tr>
<tr>
<td>2</td>
<td>Nellore</td>
<td>22</td>
<td>108</td>
<td>5,326</td>
<td>1,006</td>
</tr>
<tr>
<td>3</td>
<td>Kadapa</td>
<td>8</td>
<td>23</td>
<td>644</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>Kurnool</td>
<td>2</td>
<td>12</td>
<td>523</td>
<td>42</td>
</tr>
<tr>
<td>5</td>
<td>Krishna</td>
<td>6</td>
<td>14</td>
<td>1,020</td>
<td>214</td>
</tr>
<tr>
<td>6</td>
<td>Guntur</td>
<td>1</td>
<td>5</td>
<td>352</td>
<td>42</td>
</tr>
<tr>
<td>7</td>
<td>Prakasam</td>
<td>9</td>
<td>19</td>
<td>2,053</td>
<td>164</td>
</tr>
<tr>
<td>8</td>
<td>Nizamabad</td>
<td>2</td>
<td>8</td>
<td>650</td>
<td>78</td>
</tr>
<tr>
<td>9</td>
<td>Srikakulum</td>
<td>1</td>
<td>3</td>
<td>263</td>
<td>18</td>
</tr>
<tr>
<td>10</td>
<td>Mehaboobnagar</td>
<td>2</td>
<td>8</td>
<td>897</td>
<td>80</td>
</tr>
<tr>
<td>11</td>
<td>Nalgonda</td>
<td>1</td>
<td>6</td>
<td>458</td>
<td>36</td>
</tr>
<tr>
<td>12</td>
<td>Tiruvallur</td>
<td>1</td>
<td>3</td>
<td>120</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>73</td>
<td>295</td>
<td>16,889</td>
<td>2,548</td>
</tr>
</tbody>
</table>

*Districts 1 to 11 are in Andhra Pradesh; district 12 is in Tamil Nadu

Table II
Serological diversity of *Dichelobacter nodosus* in the tropical climate of Andhra Pradesh and Tamil Nadu states in southern India

<table>
<thead>
<tr>
<th>District no. (a)</th>
<th>District name</th>
<th>No. of samples collected</th>
<th>No. of samples positive for Dn</th>
<th>No. of samples in each serogroup (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>Chittoor</td>
<td>264</td>
<td>150</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>Nellore</td>
<td>350</td>
<td>204</td>
<td>31</td>
</tr>
<tr>
<td>3</td>
<td>Kadapa</td>
<td>99</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Kurnool</td>
<td>25</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Krishna</td>
<td>90</td>
<td>52</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Guntur</td>
<td>30</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Prakasam</td>
<td>80</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Nizamabad</td>
<td>33</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>Srikakulum</td>
<td>20</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Mehaboobnagar</td>
<td>25</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>Nalgonda</td>
<td>18</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>1,034</td>
<td>467</td>
<td>58 (12.4)</td>
</tr>
<tr>
<td>12</td>
<td>Tiruvallur</td>
<td>16</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1,050</td>
<td>478</td>
<td>58 (12.1)</td>
</tr>
</tbody>
</table>

(a) Districts 1 to 11 are in Andhra Pradesh; district 12 is in Tamil Nadu

(b) Numbers in parentheses indicate percentage

Dn: *Dichelobacter nodosus*

Detection of the 16S rRNA gene of *Dichelobacter nodosus* using polymerase chain reaction

For detection of the 16S rRNA gene of *D. nodosus*, PCR conditions and primers were essentially the same as described previously (1). The DNA extracted from for 10 min and centrifuged at 10,000 × g for 1 min. Similarly, suspected colonies showing characteristic morphology on the culture plates were directly suspended in 100 μl of sterile distilled water. Suspensions were boiled for 5 min, cooled on ice for 5 min and then centrifuged at 10,000 × g for 5 min. Portions (2 μl) of the supernatants were used as templates for the PCR reactions.
D. nodosus strain JKS-5B (serogroup B) was used as a positive control and sterile distilled water served as a negative control. Details of the primers used in this study are shown in Table III.

Serogrouping of *Dichelobacter nodosus*

Multiplex PCR with nine (A–I) serogroup-specific primers was used for serogrouping the *D. nodosus* isolates (Fig. 2), as described by Dhungyel et al. (7). Serogroup-specific DNA supplied by Dr O.P. Dhungyel was used as a positive control.

Identification of virulent and benign strains of *Dichelobacter nodosus*

Gelatin gel test

To determine whether a strain was virulent or benign, 58 *D. nodosus* isolates representative of different serogroups (A = 8, B = 25, C = 5, F = 5, I = 15) were screened for thermostable proteases in the gelatin gel test (9), with slight modification. The selection of representative isolates was based on a high score for lesion severity. Briefly, agarose (0.8% w/v) and gelatin (0.6% w/v) (Sigma Chemicals, USA) were solubilized in gel buffer (0.2M TRIS, 0.01M CaCl$_2$; pH 8.8), poured onto a petri plate and allowed to cool for 10 min. Wells were cut at 25 mm intervals and the bottom of each well was sealed with a small amount of melted gel.

For testing the thermostability of the proteases, 1 ml of each 48 h to 72 h broth culture of *D. nodosus* was diluted with 1 ml of HEPES dilution buffer (0.4M HEPES, 0.01M CaCl$_2$; pH 8.5) in standard test tubes and 50 μl portions were used in the gelatin gel test before and after heating at 68°C for 8 min and 16 min in a water bath. After 18 h of incubation at 37°C, the test was read for precipitation of unhydrolysed gelatin with a saturated solution of ammonium sulphate.

![Table III](image)

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Primer sequence (5’ – 3’)</th>
<th>Primer concentration (uM)</th>
<th>Position in fimA</th>
<th>Target</th>
<th>Serogroup</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td>CGGGGTATGTAAGCTTGC</td>
<td>0.25</td>
<td>–</td>
<td>16S</td>
<td>–</td>
<td>(1)</td>
</tr>
<tr>
<td>Reverse</td>
<td>TGGTACCGAGTATTTCACCAACCT</td>
<td>–</td>
<td>–</td>
<td>rRNA</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>FP</td>
<td>CCTAATCGAAGTCGATTG</td>
<td>0.625</td>
<td>25 to 46</td>
<td>fimA</td>
<td>A</td>
<td>(7)</td>
</tr>
<tr>
<td>RA</td>
<td>AGTTCGCTCTATTATATTT</td>
<td>0.25</td>
<td>421 to 441</td>
<td>fimA</td>
<td>A</td>
<td>(7)</td>
</tr>
<tr>
<td>RB</td>
<td>CGATCGACGACCGTCTGCTTCTT</td>
<td>0.25</td>
<td>286 to 309</td>
<td>fimA</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>RC</td>
<td>AGAAAGTCCTCTGCGCTTATTT</td>
<td>0.25</td>
<td>331 to 351</td>
<td>fimA</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>RD</td>
<td>TGCCAACAATTTCTCATCTCATC</td>
<td>0.25</td>
<td>325 to 345</td>
<td>fimA</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>RE</td>
<td>CACTTGGTATGATCGACACCGTTG</td>
<td>0.25</td>
<td>367 to 389</td>
<td>fimA</td>
<td>E</td>
<td>(8)</td>
</tr>
<tr>
<td>RF</td>
<td>ACTGGTTCTGCTAGACC</td>
<td>0.25</td>
<td>250 to 267</td>
<td>fimA</td>
<td>F</td>
<td>(8)</td>
</tr>
<tr>
<td>RG</td>
<td>CTAGGGTTAAGCTGACGTTAAG</td>
<td>0.25</td>
<td>283 to 305</td>
<td>fimA</td>
<td>G</td>
<td>(8)</td>
</tr>
<tr>
<td>RH</td>
<td>TGGACAAGACACAGAGTACC</td>
<td>0.25</td>
<td>412 to 435</td>
<td>fimA</td>
<td>H</td>
<td>(8)</td>
</tr>
<tr>
<td>RI</td>
<td>CGATGGTGACGACGATCGACC</td>
<td>0.25</td>
<td>194 to 215</td>
<td>fimA</td>
<td>(8)</td>
<td></td>
</tr>
<tr>
<td>intAF</td>
<td>ACGACATGCGACGACTGACG</td>
<td>0.25</td>
<td>–</td>
<td>intA</td>
<td>–</td>
<td>(8)</td>
</tr>
<tr>
<td>intAR</td>
<td>TCTCTGTCGGTGTGTCACTTATG</td>
<td>0.25</td>
<td>–</td>
<td>intA</td>
<td>–</td>
<td>(8)</td>
</tr>
</tbody>
</table>
A clear zone indicating hydrolysis of the gelatin by the test sample after 16 min of heating was considered positive.

Detection of the integrase A gene \textit{intA}

All 58 isolates tested in the gelatin gel test were screened for the presence of \textit{intA}. Detection of the gene was as described previously (8), with minor modifications. The concentration of magnesium chloride was 2.0 mM. Samples were amplified in 32 cycles, each comprising 1.5 min at 94°C, 1 min at 60°C and 2 min at 72°C. This was followed by a final extension of 5 min at 72°C. The PCR products were examined as described above.

Results

During the period of study, outbreaks of footrot were mainly recorded during the rainy (monsoon) season from June to December. Of the total 73 outbreaks, 21 were recorded in 2009 and 52 in 2010.

The prevalence of footrot in the states of Andhra Pradesh and Tamil Nadu during the observation period ranged from 5% to 21%, with an overall prevalence of 15% (Table I). Higher prevalence was recorded in Chittoor, Nellore and Krishna than in the other districts. Among 2,548 affected feet of the naturally infected sheep, lesions of severity 4 were present in 561 (22%) feet, severity 3 (under-running of the soft horn) in 866 (34%) and severity 2 in 1,121 (44%).

In the two states overall, among a total of 1,050 samples of lesions, 478 (45.5%) were positive for \textit{D. nodosus}. Serogrouping of \textit{D. nodosus} isolates revealed the presence of six serogroups (A, B, C, E, F, I) (Table II). Taking samples with single and mixed serogroups together, serogroups A, B, C, E, F and I were detected in 14%, 50.4%, 5.6%, 0.2%, 6.7% and 29.3% of positive samples, respectively.

Among 467 positive samples from the state of Andhra Pradesh, 205 (43.9%) belonged to serogroup B and 124 (26.6%) to serogroup I; this was followed by serogroup A in 58 (12.4%) samples, F in 32 (6.9%) and C in 20 (4.3%). Serogroup E was detected in only one sample. Mixed infections with serogroups A+B, B+C or B+I were present in Andhra Pradesh in 27 samples. Serogroup B was detected in all the districts of Andhra Pradesh except Srikakulam, serogroup A was detected in six districts, I in five, C in three, F in three, and E in only one district. Serogroups A and I were mostly confined to the two districts Chittoor and Nellore; serogroup F was mainly confined to the Krishna district. Similarly, among 11 positive samples from Tiruvallur in Tamil Nadu, serogroup B was detected in six samples, serogroup C in two samples, and mixed serogroups B+C in three samples.

The gel test demonstrated that thermostable proteases were present in all 58 isolates tested (Fig. 3). The presence of \textit{intA} (Fig. 4) was detected in 45 (77.6%) of the 58 isolates (Table IV).
Discussion

Footrot is usually considered a disease of temperate climates that have warm moist conditions. Nevertheless, the presence of footrot, together with the isolation and characterisation of \textit{D. nodosus}, is now described in sheep being reared in the tropical climate of southern India, where the maximum temperature ranges between 27°C and 42°C.

The available literature on the occurrence of footrot in the tropics is limited (13). In the present study, footrot in Andhra Pradesh was seasonally associated with rain, the favourable environmental conditions prevailing from July to December; no footrot was reported during the dry period, which is usually from January to June. The onset of the disease in Andhra Pradesh coincided with the start of the south-west monsoons (June to September). The prevalence of footrot increased gradually, reaching a peak during the period of the north-east monsoon (October to December) when the temperature ranges between 16°C and 32°C. Andhra Pradesh experiences a mild winter (December to January), as the temperature does not usually go below 16°C. The summer season begins in mid-April and continues to mid-June, when the temperature reaches 42°C or more. In the period studied, maximum numbers of outbreaks were recorded in 2010 (15 during the south-west monsoon, 37 during the north-east monsoon) compared with 2009 (five during the south-west monsoon, 16 during the north-east monsoon). This could be attributed to the higher rainfall in 2010 (Fig. 5). It is not known how \textit{D. nodosus} survives during the dry hot season, when there are no outbreaks of footrot; it is possible that the bacteria survive in the hooves of infected animals and later manifest during the favourable monsoon period.

The overall prevalence (15%) of footrot observed in the present study was higher than that reported in other parts of the world, for example, 8% to 10% in the United Kingdom (14, 15) and 3.1% in organised sheep farms in Bhutan (16). Nevertheless, the observed prevalence correlates with a report from Kashmir, India, where the prevalence was 16.4% (17). The distribution of the disease in Andhra Pradesh revealed that the greatest numbers of outbreaks occurred in Chittoor, Nellore and Krishna districts. This could be related to the presence of suitable geographic conditions, particularly the waterlogged vegetation.

In the present investigation, serogroup B was found to be predominant (50.4%), followed by serogroups I, A, F and C. The distribution and predominance of \textit{D. nodosus} serogroups vary from country to country but predominance of serogroup B has been reported in Kashmir.
Prévalence du piétin chez les ovins des zones tropicales de l’Inde méridionale, et isolement et caractérisation de *Dichelobacter nodosus*

D. Sreenivasulu, S. Vijayalakshmi, D. Raniprameela, A. Karthik, S.A. Wani & I. Hussain

Résumé
La présente communication décrit le premier signalement de cas de piétin enregistrés dans deux États de l’Inde méridionale (Andhra Pradesh et Tamil Nadu), qui se caractérisent par un climat tropical avec des températures pouvant atteindre 42 °C. La présence du piétin dans ces zones tropicales est inattendue. Entre mars 2009 et mars 2011, 73 foyers de piétin ont été enregistrés chez des moutons bruns de race Nellore répartis dans 11 districts de l’Andhra Pradesh et un district du Tamil Nadu. La prévalence globale du piétin ovin était de 15 %, avec un indice de gravité des lésions noté de 2 à 4 (sur une échelle de 0 à 4). Les foyers survenaient surtout pendant la saison des pluies, qui dure généralement de juin à décembre. Au total, 1 052 échantillons ont été prélevés sur des lésions d’ovins naturellement infectés ; *Dichelobacter nodosus* a été détecté dans 478 de ces échantillons (soit 45,5 %). La caractérisation des sérogroupes auxquels appartaient les souches isolées a mis en évidence la présence de six sérogroupes (A, B, C, E, F et I). L’infection par des souches appartenant à un seul sérogroupes a été constatée dans 448 échantillons positifs (soit 93,7 %), tandis que 30 autres échantillons (soit 6,3 %) présentaient une infection à souches multiples appartenant à deux sérogroupes. Que les infections soient imputables à un seul ou à plusieurs sérogroupes, le sérogroupes B était le plus représenté, étant présent dans 50,4 % des échantillons et distribué dans tous les districts ; venait ensuite le sérogroupes I, retrouvé dans 29,3 % des échantillons, le sérogroupes A retrouvé...
Prevalencia de la dermatitis interdigital ovina
en el clima tropical del sur de la India y aislamiento
y caracterización de *Dichelobacter nodosus*

D. Sreenivasulu, S. Vijayalakshmi, D. Raniprameela, A. Karthik,
S.A Wani & I. Hussain

Resumen

Los autores dan cuenta del primer estudio para determinar la prevalencia de la
dermatitis interdigital en Andhra Pradesh y Tamil Nadu, dos estados tropicales
del sur de la India donde las temperaturas pueden llegar a los 42°C. La presencia
dermatitis interdigital en zonas de clima tropical resulta inesperada. En total
se investigaron 73 brotes de dermatitis interdigital en ovejas Nelore pardas
aparecidos en 11 distritos de Andhra Pradesh y un distrito de Tamil Nadu entre
marzo de 2009 y marzo de 2011. Se obtuvo una prevalencia global de la dermatitis
interdigital ovina del 15%, con un nivel de gravedad de 2 a 4 (escala de gravedad
de las lesiones de 0 a 4). Los brotes se dieron principalmente durante la temporada
de lluvias, que suele ir de junio a diciembre. De un total de 1.050 muestras de
lesiones extraídas de ovejas infectadas de forma natural, 478 (un 45,5%) resultaron
positivas para *Dichelobacter nodosus*. La agrupación serológica de las bacterias
aisladas deparó 6 serogrupos: A, B, C, E, F e I. De entre las muestras positivas,
448 (un 93,7%) correspondían a un único serogrupo y 30 (un 6,3%) presentaban
una infección mixta, con presencia de dos serogrupos. Sumando las infecciones
únicas y las mixtas, el serogrupo B era el más frecuente en el 50,4% de los casos
y estaba presente en todos los distritos, seguido por el serogrupo I en un 29,3% de
las muestras, el A en un 14%, el F en un 6,7% y el C en un 5,6%. El serogrupo E fue
detectado solamente en una muestra. Esta es la primera vez que se detectan en
la India los serogrupos A y F. La totalidad de los 58 microorganismos *D. nodosus*
aislados en una submuestra con representación de los distintos serogrupos resultaron
ser virulentos, a tenor de la producción de proteasas termoestables
y la presencia del gen *intA* (de la integrasa A). Este artículo, pues, dando cuenta
del aislamiento y la caracterización de *D. nodosus*, confirma la presencia de
dermatitis interdigital virulenta en zonas de clima tropical del sur de la India.

Palabras clave

Dermatitis interdigital – Dermatitis interdigital ovina – Dermatitis interdigital virulenta –
Dichelobacter nodosus – India meridional – Ovejas – Serogrupo.
References

